Phase transitions via selective elemental vacancy engineering in complex oxide thin films
نویسندگان
چکیده
Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a central role in determining the crystal field and consequent electronic structure, leading to important electronic and magnetic phase transitions. Therefore, experimental approaches toward understanding the role of defects in complex oxides have been largely limited to controlling O vacancies. In this study, we report on the selective formation of different types of elemental vacancies and their individual roles in determining the atomic and electronic structures of perovskite SrTiO3 (STO) homoepitaxial thin films fabricated by pulsed laser epitaxy. Structural and electronic transitions have been achieved via selective control of the Sr and O vacancy concentrations, respectively, indicating a decoupling between the two phase transitions. In particular, O vacancies were responsible for metal-insulator transitions, but did not influence the Sr vacancy induced cubic-to-tetragonal structural transition in epitaxial STO thin film. The independent control of multiple phase transitions in complex oxides by exploiting selective vacancy engineering opens up an unprecedented opportunity toward understanding and customizing complex oxide thin films.
منابع مشابه
Erratum: Phase transitions via selective elemental vacancy engineering in complex oxide thin films
In this Article, Hosung Yu is incorrectly listed as being affiliated with ‘Department of Physics, Inha University, Incheon 22212, Korea’. In addition, Sung Wng Kim is incorrectly listed as being affiliated with ‘Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS) Sungkyunkwan University, Suwon 16419, Korea’ and ‘Department of Physics, Inha University, Incheon 22212, K...
متن کاملHigh performance Thermal Coating Comprising (CuO:NiO) Nanocomposite/C Spectrally Selective to Absorb Solar Energy
A novel nanocomposite consisted of nanomaterials as (CuO:NiO) and carbon (fuel ash) were designed to absorb solar energy. Thin films were made via casting and spin coating of the dopants nanocomposite thin films, containing different concentration ratios of CuO:NiO. These thin films are precipitated on a glass and copper substrates. The optical properties of the doped fuel ash films with na...
متن کاملAnnealing temperature effect on nanostructure and phase transition of Copper Oxide thin films
This paper addresses the annealing temperature effect on nanostructure and phase transition of copper oxide thin films, deposited by PVD method on glass substrate (at 110 nm thickness) and post annealed at different temperatures (200-400°C) with a flow of 1 cm3s-1 Oxygen. The X-ray diffraction (XRD) was employed for crystallographic and phase analyses, while atomic force m...
متن کاملAn Investigation of SILAR Grown CdO Thin Films
Cadmium oxide (CdO) thin films were deposited on the glass substrate by the modified SILAR method, using cadmium acetate dihydrate and ammonium hydroxide aqueous solution as precursors. The structural, surface morphological, elemental composition and optical properties of the deposited films were investigated via X-Ray Diffraction (XRD), scanning electron microscopy, EDAX,...
متن کاملFabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique
Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016